Genetic drift in genetic algorithm selection schemes

نویسندگان

  • Alex Rogers
  • Adam Prügel-Bennett
چکیده

A method for calculating genetic drift in terms of changing population fitness variance is presented. The method allows for an easy comparison of different selection schemes and exact analytical results are derived for traditional generational selection, steady-state selection with varying generation gap, a simple model of Eshelman’s CHC algorithm, and (μ + λ) evolution strategies. The effects of changing genetic drift on the convergence of a GA are demonstrated empirically. Keywords—Genetic Drift, Selection Operator, Genetic Algorithm, Evolution Strategy

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبیه سازی طرح های بهینه اصلاح نژادی هسته باز به منظور بهبود صفات رشد و ترکیب لاشه بره های لری بختیاری

     The objectives of this research were to simulate and optimize three open nucleus breeding schemes for improvement of growth traits and carcass composition in Lori-Bakhtiari lambs with 500 ewes in nucleus using a deterministic approach. These schemes were: scheme 1 with natural mating and mating ratio (M) of 50 ewes per ram in nucleus and member flocks (base), scheme 2 with artificial insem...

متن کامل

THREE SCHEMES FOR ACTIVE CONTROL OF THE PLANAR FRAME

Optimal locations of the actuators for frame active control are investigated in this article. The aim is to minimize the structural drifts by employing several actuators. By utilizing genetic algorithm, the appropriate locations of the actuators are determined. They should be placed in locations where they can minimize the maximum structural drift. To explore the capability of the proposed tech...

متن کامل

MULTI-OBJECTIVE OPTIMIZATION OF TIME-COST-SAFETY USING GENETIC ALGORITHM

Safety risk management has a considerable effect on disproportionate injury rate of construction industry, project cost and both labor and public morale. On the other hand time-cost optimization (TCO) may earn a big profit for project stakeholders. This paper has addressed these issues to present a multi-objective optimization model to simultaneously optimize total time, total cost and overall ...

متن کامل

Combination of Feature Selection and Learning Methods for IoT Data Fusion

In this paper, we propose five data fusion schemes for the Internet of Things (IoT) scenario,which are Relief and Perceptron (Re-P), Relief and Genetic Algorithm Particle Swarm Optimization (Re-GAPSO), Genetic Algorithm and Artificial Neural Network (GA-ANN), Rough and Perceptron (Ro-P)and Rough and GAPSO (Ro-GAPSO). All the schemes consist of four stages, including preprocessingthe data set ba...

متن کامل

An optimization technique for vendor selection with quantity discounts using Genetic Algorithm

Vendor selection decisions are complicated by the fact that various conflicting multi-objective factors must be considered in the decision making process. The problem of vendor selection becomes still more compli-cated with the inclusion of incremental discount pricing schedule. Such hard combinatorial problems when solved using meta heuristics produce near optimal solutions. This paper propose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Evolutionary Computation

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1999